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We investigate the characteristic crossings and anticrossings of energies and widths of
a doublet of resonances, observed in the vicinity of, and at a degeneracy of unbound
states, when the control parameters of the system are varied. This characteristic behavior
is explained in terms of the local, topological structure of the surfaces that represent the
complex energy eigenvalues in parameter space in the vicinity of a degeneracy point.
In the simple but illustrative case of the scattering of a beam of particles by a double
barrier potential well with two regions of trapping, we solved numerically the implicit,
transcendental equation that defines the eigenwave numbers of a degenerate isolated
doublet of resonances as functions of the real, control parameters of the system. We
found that, at a degeneracy of unbound states, the surface representing the resonance
eigenwave numbers as functions of the control parameters has an algebraic branch point
of rank one. Unfolding the degeneracy point, crossings and anticrossings of energies
and widths are obtained as projections of sections of the eigenwave number surfaces.

KEY WORDS: multiple resonances; resonances; scattering theory; phases; geometric;
dynamic or topological.

1. INTRODUCTION

In recent years there has been an increasing interest in the mixing and de-
generacy of an isolated doublet of unbound states of a physical system depending
on control parameters. In this paper, by means of a simple and elementary exam-
ple, we will exhibit the connection existing between the rich phenomenology of
crossings and anticrossings of the energies and widths of the resonances in the
isolated doublet of unbound states and the singularity of the surface representing
the complex resonance energy eigenvalues in parameter space.

Many years ago von Neumann and Wigner (1929) explained the now familiar
phenomenon of energy level repulsion and avoided level crossings of bound states
observed in many quantum systems driven by hermitian Hamiltonians depend-
ing on external parameters. Teller (1937) gave a geometric interpretation of level
repulsion of bound states in terms of the shape of the surfaces representing the
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energy eigenvalues as functions of the control parameters near and at a degeneracy
of two bound states. He found that the two degenerate levels correspond to the two
sheets of an elliptic double cone. Since then, it has been realized that accidental de-
generacy and level crossings, true or avoided, are important for the understanding
of a wide variety of quantum phenomena (Berry, 1985). For instance, a quantum
system acquires a topological phase—the Berry phase—when transported adia-
batically around a path in parameter space (Berry, 1984; Wilczek and Shapere,
1989; Markovsky and Vinisky, 1989) which includes an accidental degeneracy of
bound states, sometimes called a conical or diabolical point (Alden Mead, 1992;
Jackiw, 1988; Moore, 1990; Vinitski et al., 1990; Zwanziger et al., 1991).

More recently, a great deal of attention has been given to the avoided level
crossing phenomena of quantum energy eigenvalues in the case of unbound states
(Mondragón and Hernández, 1993). Novel effects have been found which at-
tracted considerable theoretical (Friedrich and Wintgen, 1985; Hernández and
Mondragón, 1994), and very recently, also experimental interest. von Brentano
(1990, 1996) examined the crossing and anticrossing properties of the energies
and widths of two unbound levels mixed by a hermitian interaction and discussed
the generalization of the von Neumann-Wigner theorem from bound to unbound
states (Philipp et al., 2000; von Brentano and Philipp, 1999). The problem of the
characterization of the singularities of the energy surfaces at a degeneracy of reso-
nances arises naturally in connection with the topological phase of unbound states
which was predicted by Hernández et al. (1992), and Mondragón and Hernández
(1996, 1998), and later by Heiss (1999), and which was recently verified in a series
of beautiful experiments by the Darmstadt group of Richter (Dembowski et al.,
2001, 2003).

Some examples of simple quantum mechanical systems with double poles
in the scattering matrix have been recently described. Vanroose et al. (1997)
examined the formation of complex double poles of the scattering matrix in a
two channel model with square well potentials. Recently, Hernández et al. (2000)
investigated a one channel model with a double δ-barrier potential and showed that
a double pole of the S-matrix can be induced by tuning the parameters of the model.

Korsch and Mossman (2003) made a detailed investigation of degeneracies
of resonances in a double δ well in a constant (Stark) field, and Keck et al. (2003)
extended and generalized the discussion of the Berry phase of resonance states
given in Hernández et al. (1992) and Mondragón and Hernández (1996, 1998)
to non-hermitian Hamiltonians. Vanroose (2001) generalized the double barrier
potential model to the case of finite width barriers. The general theory of multiple
poles of the scattering matrix, the generalized complex energy eigenfunctions and
the Jordan blocks in the complex energy representation of the resolvent operator
associated with them was developed by Hernández et al. (2003) in the framework
of the theory of the analytic properties of the radial wave function.
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Fig. 1. The double barrier potential is such that there are two unbound states, one in each well,
with equal energies and half-lives. The control parameters of the system are d and V3.

2. SCATTERING BY A DOUBLE BARRIER POTENTIAL

Doublets of resonances and accidental degeneracies of unbound states may
occur in the scattering of a beam of particles by a potential with two regions of
trapping. A simple example is provided by a spherically symmetric potential V (r)
in which the two regions of trapping are defined by two concentric potential wells
separated by two potential barriers located between the origin of coordinates and
the outer region where V = 0. In order to make the analysis as simple and explicit
as possible, we take the wells and barriers to be square as shown in Fig. 1.

In what follows, we will consider the conditions for the occurrence of a
degeneracy of unbound states in this simple system and we will be interested
in the geometric and topological properties of the surfaces that represent the
complex energy eigenvalues as functions of the control parameters of the system
in the neighborhood of and at a degeneracy of unbound states.

2.1. The Regular Solution

The s-wave radial Schrödinger equation is

d2u(k, r)

dr2
+ (k2 − U (r))u(k, r) = 0, (1)
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the potential U (r) = 2mV (r)/h2 is a double barrier such that between the origin
of coordinates, and the outer region, r > r4, where the particles propagate freely,
there are two square potential wells separated by two square potential barriers, as
shown in Fig. 1. The system has seven parameters, the positions ri(i = 1, 2, 3, 4)
and heights Vi(i = 2, 3, 4) of the four discontinuities of the potential. In this work,
we will keep the five parameters (V2, V4, r1, r3 − r2, r4 − r3) fixed and will vary
the depth of the outer well V3 and the thickness of the inner barrier d = r2 − r1.
In the following, we will refer to the pair of parameters (d, V3) as the control
parameters of the system.

The Jost regular solution of (1) normalized to unit slope at the origin, φ(k, r),
is as follows:

In the wells,

φ1(k, r) = 1

k
sin kr, 0 ≤ r ≤ r1, (2)

and

φ3(k, r) = φ2(k, r2)[cos(K3(k)(r − r2))

+α2(k, d) sin(K3(k)(r − r2))], r2 ≤ r ≤ r3. (3)

In the barriers,

φi(k, r) = φi−1(k, ri−1)[cosh(Ki(k)(r − ri−1))

+αi−1(k, d) sinh (Ki(k)(r − ri−1))],

ri−1 ≤ r ≤ ri, i = 2, 4, (4)

and, in the outer region,

φ5(k, r) = φ4(k, r4)[cos k(r − r4)

+α4(k, d) sin k(r − r4)], r4 ≤ r < ∞. (5)

In these expressions k is the wave number of the free waves and

Ki(k) = (Ui − k2)1/2, i = 2, 4, (6)

K3(k) = (k2 − U3)1/2. (7)

The functions αi(k, d) are the logarithmic derivatives of the regular solution
at the discontinuities of the potential,

αi(k, d) = 1

Ki+1(k)

d

dr
ln φi(k, r)|r=ri

, i = 1, 2, 3, 4, (8)

with K5 = k.
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The logarithmic derivatives of φ(k, r) at the consecutive discontinuities ri

and ri+1 are related by the matching conditions at ri+1,

α1(k) = k

K2(k)
cot kr1, (9)

α2(k, d) = K2(k)

K3(k)

α1(k) + tanh(K2(k)d)

1 + α1(k) tanh(K2(k)d)
, (10)

α3(k; d, V3) = K3(k, V3)

K4(k)

α2(k, d) − tan(K3(k)(r3 − r2))

1 + α2(k, d) tan(K3(k)(r3 − r2)
, (11)

and

α4(k; d, V3) = K4(k)

k

α3(k; d, V3) + tanh(K4(k)(r4 − r3))

1 + α3(k; d, V3) tanh(K4(k)(r4 − r3))
. (12)

Since the first logarithmic derivative, α1(k), is explicitly known, an explicit
solution for α2(k, d) is obtained by substitution of the expression (9) for α1(k) in
Eq. (10). From the knowledge of α2(k, d) and Eq. (11) we solve for α3(k; d, V3)
which, combined with Eq. (12) gives an explicit solution for α4(k; d, V3). Once
the logarithmic derivatives αi are explicitly known as functions of the control
parameters, an explicit expression for the regular solution φ(k, r) is obtained from
Eqs. (2)–(5).

The Jost function, f (−k), may now be readily obtained from the regular
solution in the outer region and the knowledge of α4(ki ; d, V3). When the regular
solution in the outer region, given in Eq. (5), is written as a combination of an
outgoing wave exp(ikr) and an incoming wave exp (−ikr)

φ5(k, r) = φ4(k, r4)
1

2
[(1 − iα4(k; V3, d)) exp ik(r − r4)

+ (1 + iα4(k; V3, d)) exp −ik(r − r4)], r4 ≤ r < ∞, (13)

the coefficient of the incoming wave is the Jost function. Making use of Eqs. (4),
(12) and (13) we get

f (−k) = sin kr1[cosh(K2(k)d) + α1(k) sinh(K2(k)d)]

× [cos(K3(k)(r3 − r2)) + α2(k, d) sin(K3(k)(r3 − r2))]

×
{

K4

k
[sinh(K4(k)(r4 − r3)) + α3(k; d, V3) cosh(K4(k)(r4 − r3))]

− i[cosh(K4(k)(r4 − r3))

+ α3(k; d, V3) sinh(K4(k)(r4 − r3))]

}
exp ikr4. (14)
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2.2. The Physical Solutions

The scattering wave function, ψ(k, r), is the solution of Eq. (1) which van-
ishes at the origin and, for values of r larger than the range of the potential, it
behaves as the sum of a free incoming spherical wave of unit incoming flux plus
a free outgoing spherical wave,

ψ(k, 0) = 0, (15)

and

lim
r→∞{ψ(k, r) − [exp(−ikr) − S(k) exp(ikr)]} = 0, (16)

the coefficient of the outgoing spherical wave is the scattering matrix S(k).
Hence, the scattering wave function, ψ(k, r), and the regular solution φ(k, r)

are related by

ψ(k, r) = −2ik

f (−k)
φ(k, r), (17)

and the scattering matrix is given by

S(k) = f ∗(−k)

f (−k)
= exp(i2δ(k)), (18)

where the Jost function f (−k) is given by (14).
The cross section σ0,

σ0 = 4π

k2
sin2 δ(k), (19)

is readily computed from (14) and (18).
The zeros of the Jost function give resonance poles in the scattering wave

function ψ(k, r), and in the matrix S(k). From (1) and (2)–(5), we also verify that
all roots (zeros) of the Jost function are associated with energy eigenfunctions of
the radial Schrödinger equation.

Unbound state eigenfunctions also called resonant-state or Gamow eigen-
functions are the solutions of Eq. (1) that vanish at the origin,

un(kn, 0) = 0, (20)

and at infinity satisfy the outgoing wave boundary condition,

lim
r→∞

[
1

un(kn, r)

dun(kn, r)

dr
− ikn

]
= 0, (21)

where kn is a zero of the Jost function,

f (−kn) = 0, (22)

with kn located in the fourth quadrant of the complex k-plane.
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Hence, the resonant-state eigenfunctions are related to the regular solution
by

un(kn, r) = N−1
n φ(kn, r), (23)

where Nn is a normalization constant. From (2)–(5) we verify that due to the
vanishing of f (−kn), φ(kn, r) is now proportional to the outgoing wave solution
of (1), exp(iknr) for r larger than the range of the potential.

3. DEGENERACY OF UNBOUND STATES

A degeneracy of unbound states, that is the equality of two (or more) complex
resonance energy eigenvalues of the radial Schrödinger equation, results from the
exact coincidence of two (or more) simple resonance zeros of the Jost function,
which merge into one double (or higher rank) zero lying in the fourth quadrant
of the complex k-plane. Hence, the condition for the occurrence of a degeneracy
of two unbound states at some k = k̃ is that both, the Jost function and its first
derivative vanish at k̃,

f (−k̃) = 0, (24)(
df (−k)

dk

)
k=k̃

= 0, (25)

where f (−k) is given in (14).
Therefore, to locate a degeneracy of unbound states, we have to solve this

system of two coupled equations with two real, independent parameters, d and V3,
whose values should be adjusted to satisfy (24) and (25).

The coupled Eqs. (24) and (25) were solved numerically. The zeros of the
Jost function are found by an algebraic computer package that searches for the
minima of |f (−k)| in the complex k-plane. Starting with the values V2 = V4 =
2, r1 = 1, r3 − r2 = 1, r4 − r3 = 0.304892 and d = 2, V3 = 1.04, we find the first
doublet of resonances at

k1 = 2.2101546 − i0.1366887 (26)

k2 = 2.2321776 − i0.0017984. (27)

We kept the five parameters (V2, V4, r1, r3 − r2, r4 − r3) fixed, and we ad-
justed the control parameters d and V3 until k1 and k2 became equal to some
common value k̃. Then, we computed numerically |df (−k)/dk| at k = k̃ to verify
that the second equation is also satisfied to some previously prescribed accu-
racy. Proceeding in this way, we found that by fine tuning the control parameters
to the values d∗ = 1.1314661145 and V ∗

3 = 1.038235081, the first doublet of
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Fig. 2. Degeneracy of the doublet of resonances is brought about at k̃ = 2.22697606 − i0.07220139
by fine tuning the parameters of the system as we described in the text. The split peak resonance is
characteristic of a double pole in the scattering amplitude.

resonances becomes degenerate, with a precision better than one part in 108, at

k̃ = 2.22697606 − i0.07220139. (28)

At the resonance degeneracy, the cross section has a characteristic split
peak. The splitting occurs because right at the middle of the degenerate reso-
nance, the phase shift goes through π and the cross section vanishes, see Figs. 2
and 3.

Now let us turn our attention to the generalized Gamow eigenfunctions asso-
ciated with a degeneracy of resonances. In the case of a one-channel problem with
a short range, local potential and fixed angular momentum as the example we are
considering here, the solution of the radial Schrödinger Eq. (1), which vanishes at
the origin and behaves as a purely outgoing wave at distances larger than the range
of the potential, is unique up to a multiplying constant. In other words, for each
set of values of the external parameters (d, V3) there is one and only one Gamow
normalized eigenfunction un(kn, r) associated with each complex zero of the Jost
function, kn, lying in the fourth quadrant of the complex k-plane (Hernández
et al., 2003). When we move in parameter space from the point (d, V3) where all
complex energy eigenvalues (complex zeros of the Jost function) are different to
a point (d∗, V ∗

3 ) where two complex energy eigenvalues, say k2
1 and k2

2, are equal,
the corresponding Gamow eigenfunction u1(k1, r) and u2(k2, r) go to a common
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Fig. 3. The characteristic sharp increase by 2π of the phase shift, as a function of k, produced by
a double resonance pole in the scattering amplitude. At the center of the double pole resonance,
k0 = 2.2501818, δ(k) goes through π .

limit u1̃(k̃, r). Hence, at degeneracy there is only one normal mode, the Gamow
normalized eigenfunction u1̃(k̃, r) associated with the repeated (degenerate) en-
ergy eigenvalue k̃2. However, another, linearly independent, generalized eigen-
function or abnormal mode is provided by the same limiting process that gives
rise to the degeneracy. As we move in parameter space from the point (d, V3) to
the degeneracy point (d∗, V ∗

3 ), the difference of the two eigenvalues that become
degenerate vanish, and the difference of the corresponding Gamow eigenfunctions
also vanish. Then, by continuity of k1(d, V3) and k2(d, V3) at the common limit
k̃(d∗, V ∗

3 ), the derivative of the Gamow eigenfunction with respect to the complex
energy eigenvalue exists:

û1̃(k̃, r) = 2m

h2

1

2k̃
lim

|k2−k1|→0

u2(k2, r) − u1(k1, r)

k2 − k1
= 2m

h2

1

2k̃

(
du1̃(k̃, r)

dk̃

)
. (29)

The generalized Gamow eigenfunction, also called Gamow-Jordan eigen-
function (Hernández et al., 2003) is

û1̃(k̃, r) = du1̃(k̃, r)

dẼ
+ c(k̃)u1̃(k̃, r), (30)
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where Ẽ = h2k̃2/2m, and c(k̃) is a function of k̃ but is independent of r ,

c(k̃) = 2m

h2

1

2k̃

[
1

k̃
− 1

2

1

f (k̃)

df (k̃)

dk̃
− 1

6

(
d2f (−k)

dk2

)−1

k̃

(
d3f (−k)

dk3

)
k̃

]
. (31)

Therefore, when the Jost function has a double-resonance zero at k = k̃,
there is a chain of Gamow-Jordan generalized eigenfunctions of length two,
{u1̃(k̃, r), û1̃(k̃, r)}, which are solutions of the Jordan chain of differential equa-
tions

− h2

2m

d2u1̃(k̃, r)

dr2
+ V (r)u1̃(k̃, r) = Ẽu1̃(k̃, r) (32)

and

− h2

2m

d2û1̃(k̃, r)

dr2
+ V (r)û1̃(k̃, r) = Ẽ û1̃(k̃, r) + u1̃(k̃, r), (33)

and satisfy the same boundary conditions, namely, they vanish at the origin and at
infinity they behave as outgoing waves.

In the particular case of a double barrier potential we are considering here

û1̃(k̃, r) = N−1
1̃

[
m

h2

1

k̃

(
∂φ(k, r)

∂k

)
k̃

+ c(k̃)φ(k̃, r)

]
, (34)

where N1̃ is a normalization constant and φ(k̃, r) is given in Eqs. (2)–(13) and k̃

is given in (28).
The general theory of the Gamow-Jordan eigenfunctions associated with a

degeneracy of unbound states is given by Hernández et al. (2003).

4. DEGENERACY OF UNBOUND STATES IN PARAMETER SPACE

The radial Hamiltonian Hr of a particle in a double barrier potential, in-
troduced in (1) and (32) and (33), is a smooth function of the parameters of
the potential barriers; five of these parameters were kept fixed, but the width of
the inner barrier, d, and the depth of the second well, V3, were allowed to vary.
Therefore, we may consider the Hamiltonian Hr embedded in a population of
Hamiltonians Hr (d, V3) smoothly parameterized by the two control parameters, d
and V3, which take values in some domain D of a manifold or parameter space.
Each point in D represents a Hamiltonian Hr . In this section, we will be concerned
with the topology of the surfaces representing the complex energy eigenvalues as
function of (d, V3) at a crossing of unbound states.

As explained in subsection 2.2, the energy eigenvalues of the radial Schrödin-
ger equation are determined by the zeros of the Jost function, Eqs. (14) and (22).
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Hence, when

f (−kn) = sin knr1[cosh(K2(kn)d) + α1(kn) sinh(K2(kn)d)]

×[cos(K3(kn)(r3 − r2)) + α2(kn, d) sin(K3(kn)(r3 − r2))]

×
{

K4(kn, d)

kn

[sinh(K4(kn, d)(r4 − r3))

+α3(kn; d, V3) cosh(K4(kn, d)(r4 − r3))] − i[cosh(K4(kn, d)(r4 − r3))

+α3(kn; d, V3) sinh(K4(kn, d)(r4 − r3))]

}
exp iknr4 = 0. (35)

is satisfied by kn, with kn lying in the fourth quadrant of the complex k-plane, the
complex resonance energy eigenvalue is En = h2k2

n/2m.

4.1. Energy Surfaces

The Jost function, f (−kn; d, V3), occurring in (35) is a function of many
variables. As a function of k, it is an analytic function of k-complex, but it is also
explicitly dependent on the real valued control parameters (d, V3). Therefore, the
condition (35), implicitly defines the inverse functions

kn(d, V3) = f −1(0; d, V3), n = 1, 2, . . . (36)

as branches of a smooth, multivalued function of the parameters (d, V3). Then,
not only the radial Hamiltonian Hr , but also its complex energy eigenvalues En

are smooth functions of the control parameters (d, V3) in the domain D.
We solved numerically the implicit Eq. (36) for k1(d, V3) and k2(d, V3) in

the neighborhood of, and at the crossing of unbound states. The results of the nu-
merical computation of k1(d, V3) and k2(d, V3) were represented as a two-sheeted
hypersurface in a Euclidean space with Cartesian coordinates (Re k, Im k, d, V3).

When the control parameters take the exceptional values d∗ =
1.1314661145 and V ∗

3 = 1.038235081, the two resonance zeros of the Jost func-
tion, k1 and k2, coalesce in one double zero at k̃ = 2.22697606 − i0.0720139, all
other zeros remaining simple. At this point, the surfaces representing k1(d, V3)
and k2(d, V3) touch each other and the corresponding complex energy eigenval-
ues, E1 and E2, become degenerate. In Fig. 4, the real function Re k1,2(d, V3) is
shown as a surface SR in the three-dimensional subspace with Cartesian coordi-
nates (Re k, ., d, V3). Similarly, in Fig. 5, the real function Im k1,2(d, V3) is shown
as a surface, SI in the three-dimensional subspace with Cartesian coordinates
(., Im k, d, V3).

From Figs. 4 and 5, it can be seen that, close to the exceptional point (d∗, V ∗
3 ),

where the two unbound states become degenerate, the function Re k1,2(d, V3) has
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Fig. 4. The surface SR that represents the real part of the eigenwave numbers
k1 and k2 as functions of the control parameters (d, V3) in the vicinity of a
degeneracy of unbound states. This surface has two sheets which are copies of the
plane (d, V3) cut and joined smoothly along a line LR that starts at the degeneracy
or critical point (d∗, V ∗) and runs to points such that d > d∗ and V3 > V ∗

3 . Along
LR , Re k1 = Re k2, but exact degeneracy of unbound states, k1 = k2, occurs only
at the exceptional point with coordinates (d∗, V ∗

3 ).

two branches and the surface SR representing this function has two sheets which
are glued together from two copies of the plane (d, V3) which are cut and joined
smoothly along a line LR . The projection of LR on the plane (d, V3) is a line L′ see
Fig. 6. The cut starts at the exceptional point on LR with coordinates (d∗, V ∗

3 ) and
runs from this point to values of d larger than d∗ and values of V3 larger than V ∗

3 .
The function Im k1,2(d, V3) also has two branches and the surface SI representing
this function is also glued from two copies of the plane (d, V3) which are cut and
joined smoothly along a line LI , as shown in Fig. 5. The projection of LI on the
plane (d, V3) is also the line L′ see Fig. 7. As in the case of Re k1,2(d, V3), the cut
starts at the exceptional point on LI , but, in this case, the cut runs from the point
(d∗, V ∗

3 ) to values of d smaller than d∗ and values of V3 smaller than V ∗
3 .

The lines LR and LI are orthogonal to each other—they are in orthogonal
subspaces—but have one point in common, the exceptional point with coordinates
(d∗, V ∗

3 ).
The projection of the lines LR and LI on the plane (d, V3) are the two halves

of the line L′, as shown in Figs. 6 and 7. Close to the exceptional point the line L′
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Fig. 5. The two-sheeted surface SI that represents the imaginary part of
eigenwave numbers k1 and k2 as functions of the control parameters (d, V3) in
the neighborhood of a degeneracy of unbound states with complex resonance
energies E1 = h2k2

i /2m, i = 1, 2. This surface has two sheets which are
copies of the plane (d, V3) cut and joined smoothly along a line LI that
starts at the degeneracy (exceptional) point (d∗, V ∗

3 ) and runs to points such
that d < d∗ and V3 < V ∗

3 . Along LI , Im k1 = Im k2 but exact degeneracy,
k1 = k2, occurs only at the exceptional point (d∗, V ∗

3 ).

may be approximated by its tangent at the exceptional point

V3 − V ∗
3 ≈ m(d − d∗) (37)

with m ≈ 0.19.
Let us call Re kU (d, V3) the function represented by points on the upper sheet

of the surface SR , and Re kL(d, V3) the function represented by points on the lower
sheet of the surface SR . Likewise, let us call Im kU (d, V3) the function represented
by points on the upper sheet of the surface SI and Im kL(d, V3) the function
represented by points on the lower sheet of the surface SI .

Then, at the points on the line LR such that d ′ > d∗ and V ′
3 > V ∗

3 ,

Re kU (d ′, V ′
3) = Re kL(d ′, V ′

3),

but

Im kU (d ′V ′
3) �= Im kL(d ′, V ′

3).

Similarly, at the points on the line LI , such that d ′′ < d∗ and V ′′
3 < V ∗

3 ,

Im kU (d ′′, V ′′
3 ) = Im kL(d ′′, V ′′

3 )
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Fig. 6. The graph shows the cut LR in the two-sheeted surface SR that
represents the two branched function Re k1,2(d, V3). The line L′ is the
projection of LR in parameter space. The dot marks the exceptional
point with coordinates (d∗, V ∗

3 ).

but

Re kU (d ′′, V ′′
3 ) �= Re kL(d ′′, V ′′

3 )

At the exceptional point with coordinates (d∗, V ∗
3 ), and only at that point,

both, the real and imaginary parts of k1 and k2 are equal

k1(d∗, V ∗
3 ) = k2(d∗, V ∗

3 ).

Therefore, in the complex k-plane, the crossing point of the two simple zeros
of the Jost function is an isolated point, where the Jost function has one double
zero.

4.2. Sections of the Energy Hypersurface

Let us consider a point (d, V3) in parameter space away from the exceptional
point. That is, a point in the plane of the control parameters d and V3 with Cartesian
coordinates (d, V3) �= (d∗, V ∗

3 ). To this point corresponds a pair of non-degenerate
eigenwave numbers

k1(d, V3) �= k2(d, V3) if (d, V3) �= (d∗, V ∗
3 ),
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Fig. 7. The graph shows the cut LI in the two-sheeted surface SI that
represents the two-branched function Im k1,2(d, V3). The line L′ is the
projection of LI on the plane (d, V3). The dot marks the exceptional point
with coordinates (d∗, V ∗

3 ). Notice that the projections of LR and LI are
the two halves of the same line L′.

these two eigenwave numbers are represented by two points on the k1,2(d, V3)
hypersurface.

When the point (d, V3) traces a path π in parameter space, the corresponding
points k1(d, V3) and k2(d, V3) trace two curving trajectories, C1(π ) and C2(π ),
on the k1,2(d, V3) hypersurface. The topological structure of the hypersurface
k1,2(d, V3) will be most clearly evident in the shape and properties of the trajec-
tories C1(π ) and C2(π ) for a path π that crosses the line L′ at a point close to the
exceptional point.

We define three straight line paths in parameter space, π1, π2 and π3, by
keeping the parameter V3 fixed at some value V̄

(i)
3 , i = 1, 2, 3, and letting the

parameter d vary. The values of V̄
(i)

3 were chosen in such a way that the paths
π1, π2 and π3, cross the line L′ at points located just before, at, and just after the
exceptional point.

As a point moves in parameter space along the straight line path πi from
the starting point (di, V̄

(i)
3 ) to the end point (df , V̄

(i)
3 ), the points representing

k1(d, V
(i)

3 ) and k2(d, V
(i)

3 ) move along the curving trajectories C1(πi) and C2(πi)
on the hypersurface k1,2(d, V3). The trajectories C1(πi) and C2(πi), are the inter-
section of the hypersurface k1,2(d, V3) and the hyperplane V3 = V̄

(i)
3 in the space

with Cartesian coordinates (Re k, Im k, d, V3). Since V3 is kept constant at the
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Fig. 8. The curves C1(π1) and C2(π1) are the trajectories traced by the
points k1(d, V̄

(1)
3 ) and k2(d, V̄

(1)
3 ) on the hypersurface k1,2(d, V̄

(1)
3 ) when

the point (d, V̄
(1)
3 ) moves along the straight line path π1 in parameter

space. π1 is defined by the conditions 1.05 ≤ d ≤ 1.20, V3 = V̄
(1)
3 <

V ∗
3 ; in the figure, π1 runs parallel to the vertical axis and crosses the line

LI at a point (d̄(1), V̄
(1)
3 ) with d̄(1) < d∗, V̄

(1)
3 < V ∗

3 . The projections of
C1(π1) and C2(π1) on the plane (Im k, d) are sections of the surface SI ;
the projections of C1(π1) and C2(π1) on the plane (Re k, d) are sections
of the surface SR . The projections on the plane (Re k, Im k) are the
trajectories of the poles of the scattering matrix in the complex k-plane.

fixed value V̄
(i)

3 , the trajectories C1(πi) and C2(πi) may be represented as three
dimensional curves in the space with Cartesian coordinates (Re k, Im k, d).

The trajectories C1(πi) and C2(πi), for each path πi were computed numeri-
cally. The results are shown as three-dimensional graphs in Figs. 8, 9 and 10. To
each point on the trajectories C1(πi) and C2(πi) corresponds a triple of numbers
(Re k1, Im k1, d) and (Re k2, Im k2, d) respectively, the numbers (Re k, Im k, d)
are shown in the figures as Cartesian coordinates. We show the trajectories C1(πi)
and C2(πi) in perspective view and the three projections of these curves on the
planes (Re k, d), (Im k, d) and on the complex k-plane (Re k, Im k). Notice that,
in each one of these figures, the path πi is shown as the vertical axis Od, while in
Figs. 4 and 5, Od is shown as a horizontal axis.

The properties of the trajectories C1(πi) and C2(πi) may now be readily
understood in terms of the properties of the two sheeted surfaces SR and SI that
represent the functions Re k1,2(d, V3) and Im k1,2(d, V3).
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Fig. 9. C1(π2) and C2(π2) are the trajectories traced by the points
k1(d, V3) and k2(d, V3) on the hypersurface k1,2(d, V3) when the point
(d, V3) moves along the straight line path π2 in parameter space. The
path π2 goes through the exceptional point (d∗, V ∗

3 ); in the figure, π2

runs parallel to the vertical axis and is defined by the condition V3 = V ∗
3 .

Notice the 90◦ turn made by C1(π2) and C2(π2) at the crossing (degen-
eracy) point. The three projections of C1(π2) and C2(π2) on the planes
(Re k, d), (Im k, d) and (Re k, Im k) show a crossing.

Let us consider first Fig. 8, which shows the trajectories C1(π1) and C2(π1)
traced by the points k1(d, V3) and k2(d, V3) on the hypersurface k1,2(d, V3) when
the point (d, V3) moves along the straight line path π1 in parameter space. The
path π1 is defined by the conditions

1.05 ≤ d ≤ 1.20 and V̄
(1)

3 = 1.0381,

it crosses the line L′ to the left of the exceptional point at a point d̄ (1) = 1.1308 .
Corresponding to this point, there is a point on the line LI where the two sheets
of SI cross, but there is no corresponding point on the line LR where the two
sheets of SR cross. Therefore, as the point d moves up on π1, from the starting
point at d = 1.05, the points Im k1(d, V̄

(1)
3 ) and Im k2(d, V̄

(1)
3 ) also move up and

approaching each other on the upper and lower sheets of SI respectively, until
they meet when d = d̄ (1) and the two projections of C1(π1) and C2(π1) on the
plane (Im k, d) cross at a point on the line LI where the two sheets of SI cross.
After crossing, as d moves from d̄ (1) = 1.1308 further up, the points Im k1(d, V̄

(1)
3 )

and Im k2(d, V̄
(1)

3 ) move now on the lower and upper sheets of SI respectively
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Fig. 10. The curves C1(π3) and C2(π3) are the trajectories traced by
the points k1(d, V3) and k2(d, V3) on the hypersurface k1,2(d, V3) when
the point (d, V3) moves along the straight line path π3 in parameter
space. π3 is defined by the condition V3 = V̄

(3)
3 and, in the figure, runs

parallel to the vertical axis; π3 crosses the line LR at a point (d̄(3), V̄
(3)
3 )

with d̄(3) > d∗ and V̄
(3)
3 > V ∗

3 . The projections of C1(π3) and C2(π3)
on the plane (Re k, d) show a crossing, but the projections on the plane
(Im k, d) and (Re k, Im k) do not cross.

further up and away from each other, as shown in the projections on the plane
(Im k, d) in Fig. 8. The points Re k1(d, V̄

(1)
3 ) and Re k2(d, V̄

(1)
3 ) can not cross,

hence, as the point d moves up on π1 from the starting point at d = 1.05, the
points Re k1(d, V̄

(1)
3 ) and Re k2(d, V̄

(1)
3 ) also move up and approaching each other

on the lower and upper sheets of SR respectively, they come close together when
d = d̄ (1), but since they cannot cross, when d moves further up, they also move
further up and away from each other staying on the same lower and upper sheets
of SR they were at the initial value di = 1.05, as shown in the projections on the
plane (Re k, d) in Fig. 8. We may now try to understand why is that, as d increases
from the starting point at d = 1.05, the points k1(d, V̄

(1)
3 ) and k2(d, V̄

(1)
3 ) moving

up on the trajectories C1(π1) and C2(π1) approach each other until they come close
together when d = d̄ (1), but then, their trajectories make a sudden turn in opposite
directions: C1(π1) turns almost 90◦ towards smaller values of Im k and C2(π1)
turns almost 90◦ towards larger values of Im k. As d moves further up on π1, the
points k1(d, V̄

(1)
3 ) and k2(d, V̄

(1)
3 ) move on C1(π1) and C2(π1) further up and away

from each other. From Figs. 4 and 5, the sudden turn in the trajectories seem to be
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produced by the crossing of Im k1(d, V̄
(1)

3 ) and Im k2(d, V̄
(1)

3 ) while Re k1(d, V̄
(1)

3 )
and Re k2(d, V̄

(1)
3 ) cannot cross, which means that Re k1 < Re k2 for all values of

d ε π1, while Im k1 and Im k2 can move freely from values Im k1 > Im k2 to
values Im k1 < Im k2 when d moves along π1 past the point d̄ (1).

Fig. 9 shows the trajectories C1(π2) and C2(π2) traced by the points k1(d, V3)
and k2(d, V3) on the hypersurface k1,2(d, V3) when the point (d, V ∗

3 ) moves along
the straight line path π2 in parameter space. The path π2 is defined by the conditions

1.05 ≤ d ≤ 1.20 and V̄
(2)

3 = V ∗
3 = 1.038235081

This path crosses the line L′ precisely at the exceptional point. As explained
above, at the exceptional point and only at that point, k1 = k2, the two lines LI

and LR meet and the two sheets of each of the two surfaces SR and SI cross.
Therefore, as the point (d, V ∗

3 ) moves on π2 from the starting point at d =
1.05 up to d = d∗, the points k1(d, V ∗

3 ) and k2(d, V ∗
3 ) move up on the trajectories

C1(π2) and C2(π2), they approach each other until they meet when d = d∗. At this
point, the trajectories make a sudden 90◦ turn in the same direction. This sudden
90◦ term is typical of a branch point singularity of square root type (rank one).

In a companion paper (Hernández et al., 2007), we argued that, when dis-
cussing the mixing properties of an isolated doublet of unbound states, it is conve-
nient to write the S−matrix poles, k1, and k2, in terms of a pole position function
k1,2 as

k1(d, V3) = K(d, V3) + k1,2(d, V3) (38)

and

k2(d, V3) = K(d, V3) − k1,2(d, V3) (39)

where

K = 1

2
(k1(d, V3) + k2(d, V3)) (40)

and

k1,2 =
√

1

4
(k1(d, V3) − k2(d, V3))2 (41)

In Hernández et al. (2007), it was shown that the functions K(d, V3) and
k2

1,2(d, V3) are regular functions of the parameter (d, V3) at the exceptional point
(d∗, V ∗

3 ) and may be expanded in a Taylor series about this point. Hence

k1,2 ≈ [c1(d − d∗) + c2(V3 − V ∗
3 )]1/2, (42)

For values of the parameters (d, V3) on the path π2 just before the crossing,
V3 = V ∗

3 and d = d∗ − η with η > 0.

k1,2(π2) ≈ exp(iπ/2)[c1η]1/2. (43)



Crossings and Anticrossings of Unbound States 1909

For values of (d, V3) in the path π2, just after the crossing, with, V3 = V ∗ and
d = d∗ + η, and η > 0,

k1,2(π2) ≈ [c1η]1/2. (44)

Therefore, just before the crossing, we have

k1(d∗ − η, V ∗
3 ) ≈ K(d∗, V ∗

3 ) + exp(iπ/2)[c1η]1/2, (45)

k2(d∗ − η, V ∗
3 ) ≈ K(d∗, V ∗

3 ) − exp(iπ/2)[c1η]1/2, (46)

and, just after the crossing, we get

k1(d∗ + η, V ∗
3 ) ≈ K(k∗, V ∗

3 ) + [c1η]1/2 (47)

and

k2(d∗ + η, V ∗
3 ) ≈ K(k∗, V ∗

3 ) − [c1η]1/2. (48)

The sudden 90◦ turn at the exceptional point observed in the numerical com-
putation of the trajectories, traced by the points k1 and k2 on the k1,2 hypersurface
is a clear indication that this function has a branch point singularity of square root
type at the exceptional point.

Finally, Fig. 10 shows the trajectories C1(π3) and C2(π3) traced by the points
k1(d, V3) and k2(d, V3) on the hypersurface k1,2(d, V3) when the point (d, V3)
moves along the straight line path π3 in parameter space. The path π3 is defined
by the condition

1.05 ≤ d ≤ 1.20 and V̄
(3)

3 = 1.0384 (49)

this path crosses the line L′ to the right of the exceptional point at the point
d̄ (3) = 1.132 . Corresponding to the point d̄ (3), there is a point on the line LR

where the two sheets of SR cross, but there is no corresponding point on the line
LI where the two sheets of the surface SI cross. Hence, as the point (d, V̄

(3)
3 )

moves up on π3, the points Re k1(d, V̄
(3)

3 ) and Re k2(d, V̄
(3)

3 ) also move up and
approach each other on the lower and upper sheets of SR respectively, until they
meet when d = d̄ (3) and the two projections of C1(π3) and C2(π3) on the plane
(Re k, d) cross. After crossing, as d moves further up, the points Re k1(d, V̄

(3)
3 ) and

Re k2(d, V̄
(3)

3 ) move up and away from each other on the upper and lower sheets
of SR respectively as shown in the projections on the plane (Re k, d) in Fig. 10.
The points Im k1(d, V̄

(3)
3 ) and Im k2(d, V̄

(3)
3 ) cannot cross, therefore, as the point

d moves up on π3 from the starting point at di = 1.05, the points Im k1(d, V̄
(3)

3 )
and Im k2(d, V̄

(3)
3 ) also move up and approach each other on the upper and lower

sheets of SI respectively, they come close together when d = d̄ (3), but since they
cannot cross, when d moves further up they also move further up and away from
each other staying on the same upper and lower sheets of SI where they were at the
initial value di = 1.05, as shown in the projections on the plane (Im k, d) in Fig. 10.
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The sudden turn in the trajectories is produced by two effects, one is the crossing of
Re k1(d, V̄

(3)
3 ) and Re k2(d, V̄

(3)
3 ) while Im k1(d, V̄

(3)
3 ) and Im k2(d, V̄

(3)
3 ) cannot

cross which means that Im k1(d, V̄
(3)

3 ) > Im k2(d, V̄
(3)

3 ) for all values of d on
π3, while Re k1 and Re k2 can move freely from values Re k1 < Re k2 to values
Re k1 > Re k2 when d moves along π3 past the point d̄ (3). The other effect is the
change in phase of k1,2 due to the change in sign of the term c1(d − d̄ (3)) under
the square root in the right hand side of the equation

k1,2(π3) ≈ [
c1(d − d̄∗) + c2

(
V̄

(3)
3 − V ∗

3

)]1/2
. (50)

Making use the equation (37) for points on the lineL′, k1,2(π3) may be written
as

k1,2(π3) ≈ [
c1

(
d − d̄ (3)

) + (c1 + mc2)
(
d (3) − d∗)]1/2

, (51)

since c1 and c2 are complex k1,2(π3) never vanishes, but when the term c1(d − d̄ (3))
changes sign, k1,2(π3) makes a sudden turn.

5. CONCLUSIONS

In this paper we discussed some aspects of the degeneracy of unbound states
in the scattering of a beam of particles by a double barrier potential. It was shown
that degeneracies of unbound states (resonances) and the concomitant double poles
of the scattering matrix may easily be brought about by adjusting the values of
only two real independent parameters in the Hamiltonian of the system, so as
to satisfy the degeneracy conditions. In the example discussed here, the control
parameters of the system are the width, d, of the inner barrier and the depth, V3,
of the external potential.

The resonance energy eigenvaluesEn = hk2
n/2m, and the corresponding com-

plex eigenwave numbers kn are smooth functions of the control parameters. In the
vicinity of a degeneracy of two unbound states with complex energy eigenval-
ues E1 and E2, the resonance conditions define the corresponding wave numbers,
k1(d, V3) and k2(d, V3), as branches of a multivalued function k1,2(d, V3).

With the purpose of exploring the geometrical and topological properties of
the hypersurface representing k1,2(d, V3) in parameter space, we solved numeri-
cally the implicit equation for k1(d, V3) and k2(d, V3) in the neighborhood of, and
at a degeneracy of unbound states.

We found that, close to the degeneracy of unbound states,

1. The function Re k1,2(d, V3) has two branches and is represented by a two
sheeted surface SR . The two sheets of SR are two copies of the plane
(d, V3) which are cut and joined smoothly along a line LR starting at the
exceptional point and extending to values d ≥ d∗ and V3 ≥ V ∗

3 .
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2. The function Im k1,2(d, V3) also has two branches and is represented by a
two sheeted surface SI . The two sheets of SI are two copies of the plane
(d, V3) which are cut and pasted smoothly along a line LI extending from
the exceptional point to values d ≤ d∗ and V3 ≤ V ∗

3 .
3. The projections of the lines LR and LI on the plane (d, V3) are the two

halves of a line L′ that goes through the exceptional point (d∗, V ∗
3 ).

4. At the exceptional point, and only at that point, both the real and imaginary
parts of k1 and k2 are equal. Therefore, in the complex k-plane, at the
crossing point, the two simple zeros of the Jost function merge into one
double zero which is an isolated point (no branch cuts in the k-plane).

We also computed sections, V3 = V̄3, of the hypersurface representing
k1,2(d, V3). These sections were represented as trajectories C1(π ) and C2(π ) traced
by the points k1(d, V̄3) and k2(d, V̄3) on the hypersurface k1,2(d, V3) when the point
(d, V3) traces a straight line path π in parameter space; π is defined by the condi-
tions V3 = V̄3 and 1.05 ≤ d ≤ 1.2 for various values of V̄3.

A careful examination of the properties of the surfaces SR and SI and the
trajectories C1(πi) and C2(πi) for various paths πi suggests that the topological
structure of the hypersurface representing k1,2(d, V3) is the same as the topological
structure of the surface of the square root function in the right hand side of the
expression

k1,2(d, V3) ≈ K(d, V3) ±
√

c1(d − d∗) + c2(V3 − V ∗
3 ), (52)

where c1 and c2 are complex constants.
In our previous papers on the degeneracy and crossing of resonances

(Mondragón and Hernández, 1993, 1996), see also (Hernández et al., 2003) we
had found essentially the same result written in a slightly different form, namely

k1,2(d, V3) = K(d, V3) ±
√(

�R − i
1

2
�

)2

, (53)

where �R(d, V3) and �
(d, V3) are real vectors with Cartesian components (x, 0, z)
and (
x, 0, 
z). The components x, z, 
x and 
z are regular functions of the
control parameters in a neighborhood of the critical point. Expanding �R and �
 in
Taylor series about the critical point, and keeping only terms of the first order in
(d − d∗) and (V3 − V ∗

3 ), Eq. (53) takes the form

k1,2(d, V3) ≈ K(d, V3) ±
√(

�R0 − i
1

2
�
0

)2

+ c1(d − d∗) + c2(V3 − V ∗
3 ), (54)

which is essentially the same as in (52).
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The degeneracy conditions, are

R2
0 − 1

4

2

0 = 0 and �R0 · �
0 = 0,

as in our previous papers (Mondragón and Hernández, 1993, 1996; Hernández
et al., 2003).

In conclusion, some geometric and topological properties of a degeneracy
of unbound or resonant states were explicitly exhibited in a simple model of the
scattering of a beam of particles by a double barrier potential with two regions
of trapping. We found that, in the vicinity of a degeneracy of unbound states, the
surfaces that represent the complex resonance eigenwave numbers as functions of
two real control parameters have the same topology as the surface of a square root
of the difference of two complex regular functions of the real control parameters.
The characteristic behavior of crossings and anticrossings of the energies and
widths of an isolated doublet of unbound states, observed in the vicinity of a
degeneracy when one control parameter of the system is moved, is explained in
terms of the topology of the surface that represents the complex energy resonance
eigenvalues in parameter space.
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Hernández, E., Jáuregui, A., and Mondragón, A. (1992). Revista Mexicana de Fisica 38(S2), 128.
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